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1. Motivation & Related Work



Demand Forecasting in e-Commerce

Enables optimizing stock planning, logistics, and supply chain 
operations.

• Ensure product availability online ↔ Under-prediction

• Minimize waste ↔ Over-prediction
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Demand Forecasting: Related Work

TRADITIONAL TIME SERIES MODELS

ARIMA, moving average, univariate time series 
models (e.g., [3]).

LIMITATIONS

Cold starts

Scalability

6



Demand Forecasting: Related Work

TRADITIONAL TIME SERIES MODELS

ARIMA, moving average, univariate time series 
models (e.g., [3]).

LIMITATIONS

Cold starts

Scalability

7

NEURAL SEQUENCE MODELS

RNNs, DeepAR [4], Seq2Seq, Transformer models.
Independent demand predictions

Articles are not “aware” of each other’s existence



Motivation

Article’s demand depends on the demand of related articles.
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Price of similar articles Stockouts

€ ↓X% 43 1/3 44 44 2/3 45 1/3 46

43 1/3 44 44 2/3 45 1/3 46

↓ demand
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NEURAL SEQUENCE MODELS

RNNs, DeepAR [4], Seq2Seq, Transformer models.
Independent demand predictions

Articles are not “aware” of each other’s existence

GRAPH NEURAL NETWORKS

Spatio-temporal GNNs [2].



Graph NNs in (Demand) Forecasting

• Domains with predefined graph structures
o Traffic forecasting applications [5]

o Molecular structures [6]

o Prominent architectures: DCRNN, Spatio-Temporal GCN, GraphWaveNet

• Demand forecasting in e-Commerce
o Literature remains rather limited

§ Key challenges: high dimensionality, no pre-defined graph structure

o Previous work combined GNN & LSTM for forecasting in online marketplaces [2]

§ Limitations: multiple-seller setting, point-based forecasts



Our Contributions

• End-to-end forecasting system
o Based on DeepAR – SOTA LSTM-based forecasting method [4]

o Integrates Graph-based GNN encoder to account for article relationships

o Enables probabilistic forecasting

• Generic graph construction approach
o Does not require expert knowledge and uses data-driven approach

o Based on article attribute similarity

o Highly scalable



2. Methodology

12

Graph Construction



Graph Construction [1/3]

• Build a graph based on article similarity

o Each node represents an article

o Connections based on cosine similarity

o Attributes: size, color, category, etc.



Graph Construction [2/3]

• Build a graph based on article similarity

o Each node represents an article

o Connections based on cosine similarity

o Attributes: size, color, category, etc.

o Keep edges with similarity > cutoff

0.53

0.64

0.84

0.95
0.67

0.59

0.77

Note: similarity numbers are artificial



Graph Construction [3/3]
Color Age Demand 

lag 1
... Demand 

lag P
Target 

demand

PINK ADULT 𝑦!" ... 𝑦!#$#%" 𝑦!&%"

ARTICLE ATTRIBUTES AND DEMAND LAGS

• Build a graph based on article similarity

o Each node represents an article

o Connections based on cosine similarity

o Attributes: size, color, category, etc.

o Keep edges with similarity > cutoff

• Nodes include article features 

o Static article attributes

o Dynamic demand lags

0.53

0.64

0.84

0.95
0.67

0.59

0.77

Note: similarity numbers are artificial
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Model Architecture



GNN Encoder
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Model Architecture: GraphDeepAR
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3. Experimental Results
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• Two public datasets & one proprietary adidas dataset

• Contain time series with: 

• Article demand 

• Static features (e.g., color, size)

• Time-varying features (e.g., week number, month number)

Data Summary



Performance on adidas Data

Comparing two models:
• DeepAR (benchmark)
• GraphDeepAR (ours)

GraphDeepAR wins:
• 6/6 times

Mean financial uplift:
• 2.05%

Mean

Sample 1

Sample 2

Sample 3

Sample 4

Sample 5

Sample 6



Performance on Public Datasets

Mean RMSE uplift:
• 4% for retail
• 32% for e-commerce



Performance on Public Datasets

Mean RMSE uplift:
• 4% for retail
• 32% for e-commerce

Benefiting groups:
• connected articles
• top-100 articles



Running Time Difference

• Article similarity is calculated and stored before training

• Training is slower due to the need to backpropagate through graphs

• Inference speed of GraphDeepAR is comparable



Summary

• Incorporating article relationships in demand forecasting is challenging 

• Our graph-based solution can address this challenge

o Data-driven graph construction based on article attribute similarity

o Integrates GNN encoder into the DeepAR forecasting model

o Supports probabilistic forecasts

• Experimental results show that GraphDeepAR performs well

o 2% financial uplift on adidas datasets

o Up to 32% RMSE uplift on public datasets
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Importance of Article Relationships

• Out of stock status for the same 
article from other sellers

• Launch of competing articles

• Price change on a similar article 
by other sellers

• Sudden change in competitor‘s 
performance

Seller A Seller B

Article A Article A+



Graph Illustration

Article graphs for Retail dataset (left) and E-commerce dataset (right).



Sampling Mechanism [1/2]

• Graph contains thousands of articles

o Average number of neighbors is high

o Aggregating neighbors data is costly

0.64

0.84

0.67
0.59

0.77

Article being predicted

Note: all numbers on this slide are artificial



Sampling Mechanism [2/2]

• Graph contains thousands of articles

o Average number of neighbors is high

o Aggregating neighbors data is costly

• Solution: randomly sample neighbors

o Different subset on each epoch

o Helps scaling the solution 0.64

0.84

0.67
0.59

0.77

Article being predicted

Note: all numbers on this slide are artificial



Time-Varying GNN Embeddings
Week 67 Week 75



Meta-Parameters (Retail Dataset)



Example Predictions (Retail Dataset)


