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Anomaly detection is about finding patterns in data that do not
conform to expected or normal behaviour.
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Introduction: Anomaly Detection
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Main Challenges

» Most data in the world are unlabelled
TN anomaly labels
Dataset D = {(X(i)7 y*(”)}

i=1
» Annotating large datasets is difficult, time-consuming and
expensive

» Time series have temporal structure/dependencies

X = (Xl,Xg, ...,XT) . x; € R&
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Introduction: Main concepts

» Representation Learning;
» Autoencoders;
» Variational Autoencoder (VAE)

» Recurrent Neural Networks (RNN);
» Long Short-Term Memory Network (LSTM)
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Introduction: Representation Learning

Learning good data representations is important.

» Representations are useful for downstream tasks (e.g.,
regression and classification);

» Make models more expressive and more accurate;
» Dismiss hand-designed features and representations;

» Neural networks are powerful representation learning models.
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Autoencoders

» Aim to reconstruct their input x

» Two parts: an encoder and a decoder

Rix R

(Latent Space)

Input [P p'@l Reconstruction

h hd
Encoder Decoder

» Parameterized by a feed-forward NN, a CNN, a RNN, ...
» Loss function measures the quality of the reconstructions

» Often under-complete (d, < dx) — dimensionality reduction
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The Variational Autoencoder (VAE)

» Deep generative model rooted in Bayesian inference

Latent Space (z € R%)

Input .
. P . Reconstruction
e.g., time series x

T
(”xw bxt)tzl

Encoder Decoder

po(x|z)
X = (x1,X2, ---yXT)

X; € Rdx

po(x) = /Zpe(z)pe(x|z)dz po(z|x) = %

The evidence and the posterior are intractable! e

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14
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VAE Training Objective

Objective: Maximize the Evidence Lower Bound (ELBO)

Reconstruction term Regularization term (KL loss)

™ /

log pp(x) > Eq, a0 [log po(x|2)| — DkL (Q¢(Z|X)||p0(z))j

=LgLBO (0,0; %)

Dk, denotes the Kullback-Leibler divergence between the
approximate posterior and the prior.
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Recurrent Neural Networks

What if data are not i.i.d. in time?

(e.g., time series, text, videos)

RNNs capture the temporal dependencies of the data
» Real-valued hidden state h;

» Feedback connection

» Parameters shared across timesteps

Output Sequence Vi1 N Vit
vy v h; = f(Ux; + Why_)
sdden States -~ By | By (e fhyg f is often a tanh or sigmoid
19) 1U U
Input Sequence X1 X Xt11

Margarida Silveira

BigComp’19



Long Short-Term Memory Network

Current
Hidden State

» Proposed to solve the
vanishing gradient problem

» New cell and three gates

Hochreiter & Schmidhuber, Long Short-Term Memory, Neural Computation’97

Graves et al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition,
ICANN'05
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The Principle in a Nutshell

» Based on a Variational Autoencoder;
» Encoder and decoder are Bi-LSTMs;

» Train a VAE on mostly normal data;
» Learns a normal data manifold,;

» Anomaly detection in the latent (representations) space.
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Representation Learning

Reconstruction [TNID INITNED INITIND NS T S I
R B |
Decoder S| Iy
Bi-LSTM
oo i g | e |l T
—_ —_
X N X X
e e e e
] o i o 6 o S Linear
B ey L = = =
SoftPlus
S [l s ] s {f - off B
s —_ S S
Corruption “ “ “ “
Input sequence X1 X9 X3 X7
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Representation Learning

.

Input sequence X1 X9 X3 X7 -
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Representation Learning

Denoising Autoencoding Criterion

Corruption process: additive Gaussian noise

p(X|x) =x+n , 1~ Normal(0,02]) u

Vincent et al., Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08

Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, ICLR'15

comin [ H H H

Input sequence X1 X2 X3 X7
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Representation Learning

Bidirectional Long-Short Term Memory network

hy = [ﬁt; tt]

» 256 units, 128 in each direction
» Sparse regularization, ((z) = )\Zgil |z

Hochreiter et al., Long-Short Term Memory, Neural Computation'97

Graves et al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN'05
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Representation Learning

Variational Latent Space

Variational parameters derived using neural networks

(ptz, 02) = Encoder(x)
Sample from the approximate posterior g (z|x)

Z=py;+0,0€ €~ Normal(0,I)

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14
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Representation Learning

Another Bi-LSTM.

Reconstruction M, Exlllxg 2x2ﬂx3 ExgﬂxszT Decoder = Bi—LSTM(Z)
— = = =
R B |
Decoder = = =
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g i W B |
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— e e e
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Representation Learning
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L0, p;x) = — z~q¢(z|x)[10gp9(x|z)}+>\KLDKL<Q~¢(Z|X)HPG(Z))

AKI, Weights the trade-off between reconstruction quality and KL
regularization over the latent representation z.
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Training Framework

Optimization & Regularization

>
>
>
| 4
>
>

>

About 270k parameters to optimize
AMS-Grad optimizer!

Xavier weight initialization?
Denoising autoencoding criterion?

Sparse regularization in the encoder Bi-LSTM?*
KL cost annealing®

Gradient clipping®

Training executed on a single GPU (NVIDIA GTX 1080 TI)

lReddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18
2Bengio et al., Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS'10

3Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, AAAI'17

4Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

5Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16

6Beng;io et al., On the Difficulty of Training Recurrent Neural Networks, ICML'13
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Latent Space Detection

Based on the representations in the z-space.

» Wasserstein Metric (V)

06(2 ) gy (2|
o . .

» Clustering

score(z"") = median{W (2", z’)Q}f\iY
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Time Series Data

Electrocardiogram (ECG)

2.5 T T T
[
E 0.0
£ 251
<
_5-0 ) 1 1 1
0 140 280 420 560
Samples

» Dataset ECG5000: available in the UCR Time Series
Classification Archive [Keogh et al., 2015];

» One heartbeat ~ 140 samples;
» 5000 sequences;
» Labelled, 5 classes annotated.
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Each datapoint — a sequence of length T’

R-on-T
Normal PVC PVC SPor EB UB
Class Labels
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Re ECG5000

Scores using clustering, Wasserstein distance and a support vector
machine.

All trained on the representations provided by the model.

Metric Hierarchical ‘ Spectral ‘ k-Means++ ‘ Wasserstein H SVM
AUC 0.9569 0.9591 0.9591 0.9819 0.9836
Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843
Precision 0.9585 0.9470 0.9544 0.9469 0.9847
Recall 0.9463 0.9516 0.9538 0.9465 0.9843
F-score 0.9465 0.9474 0.9522 0.9461 0.9844
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: ECG5000

Scores using clustering, Wasserstein distance and a support vector
machine.
All trained on the representations provided by the model.

Unsupervised Supervised
| Metric | | I
AUC 0.9569 0.9591 0.9591 0.9819 0.9836
Accuracy 0.9554 0.9581 0.9596 0.9510 0.9843
Precision 0.9585 0.9470 0.9544 0.9469 0.9847
Recall 0.9463 0.9516 0.9538 0.9465 0.9843
F-score 0.9465 0.9474 0.9522 0.9461 0.9844
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Comparison with other works:

Source [s/u]  Model | AUC | Acc | Fy
S | VRAE+SVM ] 0.9836 | 0.9843 | 0.9844

Proposed

U | VRAE+Clust/W | 0.9819 | 0.9596 | 0.9522
Lei et al., 2017 S SPIRAL-XGB 0.9100 - -
Karim et al., 2017 S | F-t ALSTM-FCN - 0.9496 -
Malhotra et al., 2017 S SAE-C - 0.9340 -
Liu et al., 2018 u oFCMdd - - 0.8084

- score not reported in the mentioned paper
S/U = Supervised/Unsupervised
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Conclusions & Future Work

» Effective on detecting anomalies in time series data;

» Unsupervised;

» Can be applied on data containing also some anomalous data;
» Suitable for both univariate and multivariate data;

» General - works with other kinds of sequential data (e.g.,
text, videos);
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