6th IEEE International Conference on Big Data and Smart Computing

Learning Representations from Healthcare Time Series Data for Unsupervised Anomaly Detection

João Pereira & Margarida Silveira

Signal and Image Processing Group Institute for Systems and Robotics Instituto Superior Técnico

Kyoto, Japan February 28th, 2019

Introduction: Anomaly Detection

Anomaly detection is about finding patterns in data that do not conform to *expected* or *normal* behaviour.

Introduction: Anomaly Detection

Main Challenges

Most data in the world are unlabelled

Dataset
$$\mathcal{D} = \left\{\left(\mathbf{x}^{(i)}, \mathbf{y^*}^{(i)}\right)\right\}_{i=1}^N$$
 anomaly labels

 Annotating large datasets is difficult, time-consuming and expensive

▶ Time series have temporal structure/dependencies

$$\mathbf{x} = (\mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_T)$$
 , $\mathbf{x}_t \in \mathbb{R}^{d_{\mathbf{x}}}$

Introduction: Main concepts

- ► Representation Learning;
- ► Autoencoders;
 - ► Variational Autoencoder (VAE)
- ► Recurrent Neural Networks (RNN);
 - ► Long Short-Term Memory Network (LSTM)

Introduction: Representation Learning

Learning good data representations is important.

- ► Representations are useful for downstream tasks (e.g., regression and classification);
- ▶ Make models more expressive and more accurate;
- Dismiss hand-designed features and representations;
- ▶ Neural networks are powerful representation learning models.

Autoencoders

- ► Aim to reconstruct their input x
- ► Two parts: an *encoder* and a *decoder*

- ▶ Parameterized by a feed-forward NN, a CNN, a RNN, ...
- ▶ Loss function measures the quality of the reconstructions
- lacktriangle Often under-complete $(d_{\mathbf{z}} < d_{\mathbf{x}})
 ightarrow {\sf dimensionality}$ reduction

The Variational Autoencoder (VAE)

Deep generative model rooted in Bayesian inference

$$p_{\theta}(\mathbf{x}) = \int_{\mathbf{z}} p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z}) d\mathbf{z}$$
 $p_{\theta}(\mathbf{z}|\mathbf{x}) = \frac{p_{\theta}(\mathbf{z}) p_{\theta}(\mathbf{x}|\mathbf{z})}{p_{\theta}(\mathbf{x})}$

The evidence and the posterior are intractable!

8

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

Rezende et al., Stochastic Backpropagation and Approximate Inference in Deep Generative Models, ICML'14

VAE Training Objective

Objective: Maximize the Evidence Lower Bound (ELBO)

 $\mathcal{D}_{\rm KL}$ denotes the Kullback-Leibler divergence between the approximate posterior and the prior.

What if data are not i.i.d. in time?

(e.g., time series, text, videos)

RNNs capture the temporal dependencies of the data

- ightharpoonup Real-valued hidden state \mathbf{h}_t
- ► Feedback connection
- ► Parameters shared across timesteps

Long Short-Term Memory Network

- Proposed to solve the vanishing gradient problem
- ► New cell and three gates

Margarida Silveira BigComp'19 11

Hochreiter & Schmidhuber, Long Short-Term Memory, Neural Computation'97

 $^{{\}it Graves}~{\it et~al.},~{\it Bidirectional~LSTM~Networks}~{\it for~Improved~Phoneme~Classification~and~Recognition},~{\it ICANN'05}$

The Principle in a Nutshell

- ▶ Based on a Variational Autoencoder;
- ► Encoder and decoder are Bi-LSTMs;
- ► Train a VAE on mostly **normal** data;
- ► Learns a normal data manifold;
- ▶ Anomaly detection in the latent (representations) space.

Proposed Approach

Representation Learning

Detection

Proposed Approach

Representation Learning

Detection

Margarida Silveira

Denoising Autoencoding Criterion

Corruption process: additive Gaussian noise

$$p(\tilde{\mathbf{x}}|\mathbf{x}) = \mathbf{x} + \mathbf{n}$$
 , $\mathbf{n} \sim \text{Normal}(\mathbf{0}, \sigma_{\mathbf{n}}^2 \mathbf{I})$

Vincent et al., Extracting and Composing Robust Features with Denoising Autoencoders, ICML'08
Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, ICLR'15

Learning temporal dependencies

Bidirectional Long-Short Term Memory network

$$\mathbf{h}_t = \left[\overrightarrow{\mathbf{h}}_t; \overleftarrow{\mathbf{h}}_t\right]$$

- ▶ 256 units, 128 in each direction
- ▶ Sparse regularization, $\Omega(\mathbf{z}) = \lambda \sum_{i=1}^{d_{\mathbf{z}}} |z_i|$

Hochreiter et al., Long-Short Term Memory, Neural Computation'97

Graves et al., Bidirectional LSTM Networks for Improved Phoneme Classification and Recognition, ICANN'05

Margarida Silveira BigComp'19 14

Variational Latent Space

Variational parameters derived using neural networks

$$(\mu_{\mathbf{z}}, \sigma_{\mathbf{z}}) = \text{Encoder}(\mathbf{x})$$

Sample from the approximate posterior $q_{\phi}(\mathbf{z}|\mathbf{x})$

$$\mathbf{z} = \boldsymbol{\mu}_{\mathbf{z}} + \boldsymbol{\sigma}_{\mathbf{z}} \odot \boldsymbol{\epsilon} \quad \boldsymbol{\epsilon} \sim \operatorname{Normal}(\mathbf{0}, \mathbf{I})$$

Kingma & Welling, Auto-Encoding Variational Bayes, ICLR'14

Margarida Silveira BigComp'19 14

Margarida Silveira BigCon

Decoder Bi-I STM

Encoder Bi-LSTM

Corruption

Margarida Silveira

Margarida Silveira

Loss Function

$$\mathcal{L}(\theta, \phi; \mathbf{x}) = -\mathbb{E}_{\mathbf{z} \sim \tilde{q}_{\phi}(\mathbf{z}|\mathbf{x})} \Big[\log p_{\theta}(\mathbf{x}|\mathbf{z}) \Big] + \lambda_{\mathrm{KL}} \mathcal{D}_{\mathrm{KL}} \big(\tilde{q}_{\phi}(\mathbf{z}|\mathbf{x}) || p_{\theta}(\mathbf{z}) \big)$$

 $\lambda_{\rm KL}$ weights the trade-off between reconstruction quality and KL regularization over the latent representation ${f z}$.

Training Framework

Optimization & Regularization

- ► About 270k parameters to optimize
- ► AMS-Grad optimizer¹
- ► Xavier weight initialization²
- ► Denoising autoencoding criterion³
- ► Sparse regularization in the encoder Bi-LSTM⁴
- ► KL cost annealing⁵
- ► Gradient clipping⁶

Training executed on a single GPU (NVIDIA GTX 1080 TI)

Margarida Silveira BigComp'19 10

¹Reddi, Kale & Kumar, On the Convergence of Adam and Beyond, ICLR'18

²Bengio et al., Understanding the Difficulty of Training Deep Feedforward Neural Networks, AISTATS'10

³Bengio et al., Denoising Criterion for Variational Auto-Encoding Framework, AAAI'17

⁴Arpit et al., Why Regularized Auto-Encoders Learn Sparse Representation?, ICML'16

⁵Bowman, Vinyals et al., Generating Sentences from a Continuous Space, SIGNLL'16

⁶Bengio et al., On the Difficulty of Training Recurrent Neural Networks, ICML'13

Proposed Approach

Representation Learning

Detection

Proposed Approach

Representation Learning

Detection

Latent Space Detection

Based on the representations in the z-space.

► Clustering

▶ Wasserstein Metric (W)

$$q_{\phi}(\mathbf{z}^{ ext{test}}|\mathbf{x}^{ ext{test}}) \ q_{\phi}(\mathbf{z}^{i}|\mathbf{x}^{i})$$

$$\operatorname{score}(\mathbf{z}^{\operatorname{test}}) = \operatorname{median}\{W(\mathbf{z}^{\operatorname{test}}, \mathbf{z}^{i})^{2}\}_{i=1}^{N_{W}}$$

Experiments & Results

Electrocardiogram (ECG)

- ▶ Dataset ECG5000: available in the UCR Time Series Classification Archive [Keogh et al., 2015];
- ▶ One heartbeat \approx 140 samples;
- ▶ 5000 sequences;
- ▶ Labelled, 5 classes annotated.

Latent Space

Each datapoint \rightarrow a sequence of length T

Results ECG5000

Scores using clustering, Wasserstein distance and a support vector machine.

All trained on the representations provided by the model.

Metric	Hierarchical	Spectral	k-Means $++$	Wasserstein	SVM
AUC	0.9569	0.9591	0.9591	0.9819	0.9836
Accuracy	0.9554	0.9581	0.9596	0.9510	0.9843
Precision	0.9585	0.9470	0.9544	0.9469	0.9847
Recall	0.9463	0.9516	0.9538	0.9465	0.9843
F_1 -score	0.9465	0.9474	0.9522	0.9461	0.9844

Results ECG5000

Scores using clustering, Wasserstein distance and a support vector machine.

All trained on the representations provided by the model.

Unsupervised

Supervised

Metric	Hierarchical	Spectral	k-Means $++$	Wasserstein	SVM
AUC	0.9569	0.9591	0.9591	0.9819	0.9836
Accuracy	0.9554	0.9581	0.9596	0.9510	0.9843
Precision	0.9585	0.9470	0.9544	0.9469	0.9847
Recall	0.9463	0.9516	0.9538	0.9465	0.9843
F_1 -score	0.9465	0.9474	0.9522	0.9461	0.9844

Comparison with other works:

Source	S/U	Model	AUC	Acc	F ₁
Proposed	S	VRAE+SVM	0.9836	0.9843	0.9844
Froposed	U	VRAE+Clust/W	0.9819	0.9596	0.9522
Lei et al., 2017	S	SPIRAL-XGB	0.9100	-	-
Karim <i>et al.</i> , 2017	S	F-t ALSTM-FCN	-	0.9496	-
Malhotra et al., 2017	S	SAE-C	-	0.9340	-
Liu et al., 2018	U	oFCMdd	-	-	0.8084

- score not reported in the mentioned paper $S/U \equiv \textbf{S} u pervised/\textbf{U} n supervised$

Conclusions & Future Work

- ▶ Effective on detecting anomalies in time series data;
- ▶ Unsupervised;
- ► Can be applied on data containing also some anomalous data;
- ► Suitable for both **univariate and multivariate** data;
- General works with other kinds of sequential data (e.g., text, videos);

Acknowledgements

Thank you for your attention!

mail@joao-pereira.pt
msilveira@isr.tecnico.ulisboa.pt